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D E C A Y  OF A C E N T E R E D  P R A N D T L - M A Y E R  C O M P R E S S I O N  WAVE 

IN A S T E A D Y  GAS F L O W  

A. V.  O m e l ' c h e n k o  and V.  N.  Uskov  UDC 533.6.011.72 

Discontinuity decay at a singular point of a centered compression wave is considered. Analytical 
solutions are 9iven that allow one to determine the type of reflected discontinuity that issues 
from the point of decay and the boundaries of ranges of parameters within which a solution of 
the problem ezists. 

In t roduc t ion .  The problem of decay of an arbitrary stationary discontinuity in a plane homogeneous 
supersonic flow of an ideal inviscid gas is a traditional problem of supersonic gas dynamics. This problem, 
formulated for the first time by Landau [1], still attracts the attention of researches [2-5]. 

�9 In the present paper, we consider a particular case of the problem - -  discontinuity decay at a singular 
point of a centered compression wave. From analysis of isomachs in the plane of wave intensities, Adrianov et 
al. [4], and Omel'chenko and Uskov [6] obtained analytical solutions that allow one to determine the type of 
reflected discontinuity that issues from the point of decay, the boundaries of ranges of the initial parameters 
within which a solution of the problem exists, and optimal waves for various parameters of the problem [6]. 

The solutions obtained are of both theoretical and applied significance and can be used in the gas- 
dynamic design of supersonic air intakes, facilities of jet technology, and other equipment. 

1. We consider a Prandtl-Meyer centered compression wave (Fig. 1) in an ideal gas flow at known 
Mach number M and adiabatic exponent 7" The ratio of the static pressures behind the wave pl and ahead 
of the wave p are treated as the intensity ,/1 (,/1 = pl/p) of wave 1. The modulus of the flow deflection angle 
in a simple wave is determined using the known Prandtl-Mayer functions: 

//I(M, J ) =  I~a(M1)- w(M)l. (1.1) 

The relationship of the Mach numbers ahead of the wave M and behind the wave M1 is established 
using the following general relation for isentropic i and shock j waves [6]: 

#/#1 = J/E ~ = 1 + ~(M 2 - 1), E = g/pl, ~ = ( 7 -  1 ) / (7  + 1)]. (1.2) 

The values of E and J are related by the Rankine-Hugoniot adiahat for j waves and the Laplace- 
Poisson adiahat for i waves: 

E (j) = (d + e)/(1 + e J), B(i) = jll-r. (1.3) 

Hence, the 'value of M1 in (1.1) is determined with allowance for (1.2) and (1.3) from the formula 

m = [7 = (1 + (1.4) 

The condition M1/> 1 restricts values of the compression-wave intensity and flow-deflection angle to 
the quantities J ,  and/~,, which are calculated by the formulas 

' J,(M) = #'), /L(M) = w(M). (1.5) 
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The center of the compression wave (point A in Fig. 1) is a singular point at which wave decay occurs [I]. 
The decay is accompanied by formation of reflected decay 2 and the resulting shock 3, which issue from point 
A and have different directions. In Fig.l, the directions of the main (resulting) shock 3 and the compression 
wave 1 coincide, and, hence, they have identical indices of direction Xi (Xl = X3 = +1) [4]. The reflected 
discontinuity is oppositely directed (X2 = -1 )  and can be both a shock [A~i) = signA = +1, A = In J] (Fig. 

la) and a centered rarefaction wave [A(i) = -1] (Fig. lb). In a particular case, the reflected discontinuity can 
be absent (wave decay without reflection) (Fig. lc). 

The problem of discontinuity decay is formulated as follows: for a flow with known M and 7 it is 
required to determine the intensities of the discontinuities that issue from the point A from a given intensity 
dl of the centered compression wave. The solution is constructed on the basis of the traditional conditions 
of dynamic compatibility for the tangential discontinuity 4, which issues from the point A. These conditions 
lead to a system of equations (a system for the decay) for the intensity ,/3 of the strong shock 3 and for the 
intensity Jz of the reflected discontinuity 2: 

J, J2 = ,/3; (1.6) 

fl,(M, J,)  + r J2) - fla(M, J3). (1.7) 

The index of the flow deflection angle is C = 1 if the flow past the wave rotates counterclockwise, and 
it is C -- - 1  in the opposite case. The positive and negative values of the quantities r  :~, and X are related 
by the simple relation [4] 

r = (1.8) 

Hence, r = Ca = 1, and C~ = 1 for the reflected rarefaction wave (Fig. lb), and C~ = - 1  for the 
shock (Fig. la). 

The modulus of the deflection angle 82 for the reflected rarefaction wave is calculated from formula 
(1.1) using the Mach numbers behind the compression wave M1 and behind the reflected wave M2. The value 
of Mz is expressed in terms of Jz by formula (1.4) with corresponding replacement of the index. 

If the reflected discontinuity is a shock, the angle ~ is obtained from the relation 

r,N:..J ] 
f~ (M'J )=arc tan tV J + e  J m + e - ~ - e ) ( J - 1 )  [ J m = ( l + e ) M Z - e ]  (1.9) 

using M1 and J = J2- In this case, M1 is expressed in terms of the parameters M and Jl from (1.2) with 
allowance for the first formula of (1.3). 

In addition, the deflection angle f/a on the resulting shock 3 can be calculated by relation (1.9) from 
the given values of M and J = Ja. 

The problem is to determine the boundaries of ranges of the initial parameters (M, J1, and 7) within 
which reflected discontinuities of various types occur, the boundaries of ranges in which the formulated problem 
does not have solutions, and the intensities of optimal waves [6]. 
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Fig. 2 

2. Analysis of the solution of the decay system (1.6) and (1.7) is conveniently performed on the plane 
of the wave intensities (A = In J ,  8) [4, 6] (Fig. 2). The curves of constant Mach numbers (isomachs) on this 
plane are constructed on the basis of relations (1.1), (1.4), and (1.9). The isomach of a shock is usually called a 
heart-shaped curve. In Fig. 2, curves I-III are the isomas of the compression wave and the reflected and main 
shocks, respectively. Points I on the isomach I correspond to the specified value of J1 and have coordinates A1 
and 81. The dashed curves II in Fig. 2 show the reflected discontinuities 2 (see Fig. 1). According to formula 
(1.8), these curves are either the right branch of the rarefaction wave or the left branch of the heart-shaped 
curve. They are constructed in a coordinate system with origin at point 1 on the isomach I (Fig. 2) and are 
described by formulas (1.1) and (1.4) in which the subscript 1 is replaced by the subscript 2, and M is replaced 
by M1 in the first case or by formula (1.9) for M = M1 and J = ,/2 in the second case. 

Point 2 (Fig. 2) of intersection of curves II and III is a graphical solution of system (1.6) and (1.7). 
Its coordinates on the heart-shaped curve III give the intensity Ja of the main shock and the flow deflection 
angle 83 at this shock. The coordinates A2 and ~ in the coordinate system with origin at point 1 correspond 
to the same characteristics of the reflected discontinuity. 

Figure 2 gives possible solutions of the problem for various values of the initial parameters M and J1 
and a constant value of 7. Figure 2a refers to the solution with a reflected rarefaction wave, and point 2 in Fig. 
2b refers to a reflected shock. The points 9i of intersection of isomachs I and III in Fig. 2b and e-i illustrate 
compression-wave decay without a. reflected discontinuity (,/2 = 1 and 82 = 0). 

Qualitative analysis of Fig. 2 shows that the solution depends on the position of point 1 relative 
to curve III. In the case of a weak compression wave, the relative position of the isentropic curves I and 
the heart-shaped curves III is determined by the values of the derivatives a tA/0~ t of the kth order at the 
coordinate origin, obtained using relations (1.1), (1.4), and (1.9) in which J3 --~ 1 and ,/1 --* 1. Analysis of 
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these derivatives shows that curves I and III at the coordinate origin have second-order tangency for any M, 
and for 

MF, = ~ [ (3-7) :F  ~2~-1-1] ({ = 1, 2), (2.1) 

their third-order derivatives also coincide. In this case, in the range M E [1,MF1] U [MF2,oo), we have 
o~Aa/a/~ < o~A] /a~ ,  and in the range M E [MF~,MF2], the inverse inequality is valid. This means that 
in the first case, the decay of a weak compression wave (,/1 ~- 1) is accompanied by formation of a reflected 
rarefaction wave, and in the second case, the reflected discontinuity is a shock. 

The curves of MF, (7) and MFa (7) are given in Fig. 3 (curves 1 and 2). Previously, they were obtained 
in solution of the problem of the interaction of weak perturbations with a shock [7] and in analysis of the 
properties of isomachs on the plane of (//, A) [4]. 

With increase in 21, the position of point 1 relative to curve III (see Fig. 2) depends greatly not only 
on the values of M and "f but also on the intensity Jl of the centered compression wave. 

3. The analysis of isomachs in Sec. 2 and results of numerical solution of the decay system (1.6) and 
(1.7) show that for M < MF1, the isomach I of the compression wave is entirely located inside the heart-shaped 
curve lII, and for any value ,/1 E [1, J.(M)], the reflected discontinuity 2 is a centered rarefaction wave (see 
Fig. lb). In this range, the decay system has the form 

�9 13 -" J, J2, w(M) - 2w(M,) + w(M2) - ]~(i)(M, J3), P ' - J,, = J3. (3.1) 

Here Mz is the Mas number behind the reflected rarefaction wave 2. 
For MFI < M < Ms, the lower portion of the isomach I, which corresponds to the range of intensities 

of the compression wave -/1 E [1, Je]], is located outside of the heart-shaped curve III (Fig. 2b). In this range 
of ,/1, the reflected discontinuity is a shock (Fig. la). For these ,/1, system (1.6) and (1.7) has the form 

Ja - JIJa, -~I - Jl, w(M) - w(M,) - ~(i)(Mh J2) = ~(J)(M,,/3). (3.2) 

For J1 = J~,(M), the compression wave decays without reflection (Fig. lc), and in the range J, E 
[J01, J*], a reflected rarefaction wave occurs again. To determine J01 in formulas (3.1) or (3.2), one should set 
Jz = I. This leads to the following system of equations for Jgl and//01: 

w(M) -'w(M,) = ~(J)(M, Jgl), pl = P J ~ ' / ' ~ .  (3.3) 

The functions ~.(M) and ~g1(M) (curves 1 and 2 in Fig. 4) have a point of tangency for M = Ms. 
At this point, we have M] = M2 = 1, J2 = 1, w(M1)  = w(M2)  -- 0, and, hence, relation (3.2) leads to the 
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following equation for Ms: 

to(M) = 3(i)(M, J3), J3 - #n. (3.4) 

The curve of M,('y) is given in Fig. 3 (curve 3). 
Thus, in the range of Mach numbers M E [MFI, Ms], the reflected discontinuity is a shock for ,/1 E 

[1,291] (region 2 in Fig. 41, and a rarefaction wave for ,11 E [,191,,1,1 (region O1). Curve 2, which separates 
the regions O1 and 02 corresponds to decay of the compression wave without reflection. 

For M E [Ms,M~], the isomach of the compression wave is located outside of the heart-shaped curve 
III (see Fig. 2c). Hence, the reflected discontinuity can be a shock only. With increase in ,11, the dimensions 
of the heaxt-shaped curve II, which corresponds to the reflected shock, decrease, and for ./1 > rib, curves II 
and III do not have points in common. This means that for M > Ms and ,11 > ./6, the dynamic-compatibility 
conditions (1.6) and (1.7) for the tangential discontinuity 4 do not hold. The region Os, bounded by curves 1 
and 3 in Fig. 4, corresponds to the paxameter values for which system (3.2) does not have solutions. 

The position of the boundary of region Os depends on the behavior of the function Jl(Ja) given by 
system (3.2 I. As can be seen from Fig. 2c, for the Mach numbers considered, any intensity ,/I < Jb corresponds 
to two points of intersection of curves [I and Ill; for -/1 = Jb, these points merge into one. 

For a fixed Mach number, the curve of J1(J3) is nonmonotonic (curve I in Fig. 5), and the maximum 
of the function Jl(JS) determines the limiting value of the compression-wave intensity Jb(M), beginning from 
which the problem of wave decay does not have solutions. 

Since in (3.2), the relationship between J1 and ,/3 is implicit, it is reasonable to use the Lagrange method 
of indefinite multipliers to find the intensities J~. The Lagrange function F = J1 + Alto(M) - w(Ml(J1)) - 
~(J)(MI(J1) ,Ja/JI)  - ~(i)(M, Ja)] for fixed M depends only on J1, Ja, and A (A is the Lagrange multiplier), 
because Mz is expressed explicitly in term~ of the intensity -/1 of this wave [formula (1.4)]. 

Differentiating F with respect to the indicated variables and setting the resulting expressions to zero, 
it is not difficult to obtain the following system of equations for Jb: 

w(M) - w(M1) - 3~i)(Mh `1a) = 3~i)(M, Jz); (3.51 

03(i)(MI, Ja) o~i)(M, Js) 
q- = 0, .11,12 = J3, p = plJ~ In. (3.6) 

OA2 0A3 

The derivatives in (3.6) are obtained by differentiating (1.9) with respect to `1: 

03(i)  ,1 [ e 6 + X(1 + e) 

OA - e) - s ( 1  + (3.7) 

X = p ( l + e ) - ( l + e J ) ,  S = X ( J + e ) - e ( l + e J ) ( J - 1 ) .  

Now, knowing Jb(M), it is easy to construct a curve of 3b(M) (curve 3 in Fig. 4) that corresponds to 
the boundary of region O3 in which the problem does not have solutions. 
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For a Mach number Ma, the isomachs of the compression wave I and the shocks III have tangency 
at point d (Fig. 2d). For M > Md, they have two points of intersection: 92 and 93 (Fig. 2e). In the range 
J~ E [Jg3, Jg2], a portion of the isomach I is located inside the heart-shaped curve III. Hence, for M > Md 
again, as for small Mach numbers, there is region 04 in which reflection occurs as a rarefaction wave appears. 

The values of Jd(7) and Md(7) are obtained form the conditions 

~i)(Md, Jd)---- ~J)(Md, Jd), 0~i)(Md'Jd) ---- O~J)(Md'Jd) (3.8) 
OAd ~3Ad 

The derivative on the right side of (3.8) is determined from formula (3.7), and the derivative on the 
left side is calculated from MI: 

a~(O ~ -  1 
OA = ,7 M2 (3.9) 

The curve of Md(7) is given in Fig. 3 (curves 4). 
The compression-wave intensities Jg2 and Jg3 for which the wave decays without reflection are 

determined by solution of Eq. (3.3); in this case, the intensity Jg2 should be sought in the range [Jd, Jb(M)l 
and the values of Jg3 in the range [1, Jd]. 

The value Jg3 = 1 occurs for M = MF2 (2.1) and corresponds to the angle ~3 = 0. This means that the 
point 93 exists only in a narrow range of Mach numbers M E [Md, MF2], descending down the heart-shaped 
curve III to the coordinate origin with increase in M (Fig. 2f). 

The second point of intersection of the isomachs I and II (the point 92) ascends curve I with increase in 
M and approaches the point b, which corresponds to the boundary of the region of absence of solutions (Fig. 
2g). For M = Mb, the points b and 92 merge (Fig. 2h). As a result, for M > Mb, the reflected discontinuity 
can be a rarefaction wave only (Fig. 2i). 

The behavior of the isomac.hs in the plane of the wave intensities leads to narrowing of the region 02, 
in which the wave decay is accompanied by a reflected shock. For M = Mt, this region disappears. The value 
of Mb is determined from system (3.5) and (3.6) in which one should set J2 -- 1 (curve 5 in Fig. 3). 

As can be seen from Fig. 2i, for M > Mb, the point, g2 does not disappear but its physical meaning 
c~hanges. Indeed, in the range of intensities ./1 E [1, Jr a solution of system (3.1) exists and is unique. 
However, beginning with the point 92, two points of intersection of curves II and III (points 23 and 2b) 
correspond to the intensity ./1. This situation is typical of the interference theory of shock waves [4]. Usually, 
in such cases, of two solutions one chose the solution that corresponds to the weaker shock (point 23). 

For M > Mb, the type of reflected discontinuity at the point b corresponding to the absence of solution 
also changes. Accordingly, the system of equations for determining the dependence Jr(M) changes. 

To define a system of equations that is similar to (3.5) and (3.6), it is necessary to examine the behavior 
of the function Jl(J3) given by Eqs. (3.1). As in the case of a shock, this function is nonmonotonic (curve 2 
in Fig. 5), and the maximum point corresponds to the boundary of absence of solution. A test of the function 
Jl(J3) for extremum leads to the following system of equations for determining the dependence Jb(M) in the 
case M > M6: 

w(U) - 2w(M]) + w(M2) =/3(i)(M, J3); (3.10) 

a,8(i)(M1, J2) 8,8~'/)(M, J3) 
+ = O, J1J2 = .13, P = PlJ~/~, P2 = #j~l/,~. (3.11) OA2 aA3 

The derivatives in (3.10) and (3.11) are calculated from formulas (3.7) and (3.9) for j and I, respectively. 
With a further increase in the Mach number, the scheme of compression-wave decay does not change 

radically. 
4. The value of 7 has a significant effect on the singular Mach numbers, and, hence, on the boundaries 

of the characteristic regions of the problem. 
Since the value of Ms (3.4) practically does not depend on 7 (curve 3 in Fig. 3), and over the entire 
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range 7 E (1.2], it is equal to 1.50 with accuracy to the second decimal place, the beginning of the region of 
absence of solution of the problem depends only slightly on 7. 

In contrast to the weakly decreasing monotonic curve of MFI(7) (curve 1 in Fig. 3), the function 
MF2(7) (curve 2) tends to infinity as 7 ~ 5/3. In the range 7 E [5/3.2], the reflected discontinuity can be 
both a rarefaction wave and a shock for any M > Md. 

In turn,  the function Md(7) (curve 4 in Fig. 3) exists only for 7 E [1.15; 2]. For 7 < 1.15, isomachs I 
and III in Fig. 2 have not more than one point of intersection for any Mach numbers. 

Curve 5 in Fig. 3 corresponds to the function Mb(7). Obviously, with increase in 7 the Mach number 
M = Mb increases monotonically, reaching the largest value Mb = 6.844 for 7 = 2. Hence, there are no 
significant differences in the behavior of Mb for different 7- 

Analysis of Fig. 2 shows that  for small Mach numbers (Fig. 2a and b), the boundary point of isomach 
I marked by the  asterisk and described by formulas (1.5) is located below the top of the heart-shaped curve 
III. With increase in M, compression-wave intensities for which the static pressure behind the compression 
wave exceeds the static pressure behind the normal shock appear (Fig. 2c-i). Hence, there is a singular Mach 
number M = M,n for which the equality J ,  = J,n holds; the value of M,,  is obtained as a root of the 
equation 

~p~ - (1 + ~)pm + 1 = 0. (4.1) 

An analytical solution of Eq. (4.1) exists if t / =  N + 1, where N = 1, 2, 3. We have Mm = 2.646 for 
N = 1 (7 = 2) and Mm = 2.226 for g = 2 (7 = 3/2). For N = 3 (7 = 4/3), Eq. (4.1) is cubic and has a root 
Mm = 2.102. Numerical solution of (4.1) for 7 = 1.4 gives Mm = 2.151. 

5. The maximum flow deflection angle fl~} in the centered compression wave ignoring the shock-wave 
interaction at the  singular point  of the centered wave is obtained from relations (3.1) and (3.2) in which one 
should set M--,cx~: 

~ ) =  ~ 1-V~ 
2 (5.1) 

[/3~ ) = 130.45 ~ for 7 = 1.4]. 

T h e  indicated angle exceeds severalfold the maximum flow deflection angle at the  shock fl~) [4]: 

]~ )  = arctan 1 - 2V~ (5.2) 

[ ~ )  ---- 45.58 ~ for 7 ---- 1.4]. In addition, the wlue  of ]~)  increases infinitely with decrease in 7, and this 
contradicts the  physical sense of the problem. 

Allowance for the  shock-wave interaction at the singular point of the wave imposes a significant 
restriction on / /~ )  in the isentropic compression wave: the limiting angle is defined as the maximum of the 
function ~/b(M) which is a t ta ined for M = M~ (the point a on curve 3 in Fig. 4). The  singular Mach number 
M, is determined from analysis of the function /~b(M) for extremum and depends only on 7. From Fig. 3 
(curve 6) it is evident tha t  for any angles 7, the value of M~ is finite, i.e.,//b(oo) <//b(M~). In this case, in the 
range 7 E (1, 1.82],-the max imum of the angle t3b(M) corresponds to a reflected rarefaction wave (M~ > Mb), 
and for 7 E [1.82, 2], the max imum flow deflection angle occurs in the system with a reflected shock. 

The calculations performed show that ,  in contrast to the angle/3(/) (5.1), the angle 13a =/3b(Ma) is finite 
for any 7 E (1,2]: the function/3a(7) decreases monotonically from/3a = 53.135 ~ (7 --* 1) to 13a = 28.308 ~ 

(7 = 2). In addition, for any 7, the  angle/3a is lower than the maximum flow deflection angle/3(m j) (5.2) at the 
shock. 

Furthermore,  it should be noted that  the maximum overall flow deflection angle in the  system, which 
coincides with the max imum flow deflection angle at the resulting shock 3 (see Fig. 1), increases monotonically 

with increase in M and tends to ~ )  (5.2) as M ~ oo. 
6. As shown in [5, 6], an isentropic compression wave is used to produce optimal shock-wave systems. 
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In practice, the gas-dynamic design of such systems is implemented in such a manner that the wave is centered 
[5], and the flow past the wave does not show extremal properties. 

An important and most common problem of controlling a supersonic flow is to decelerate the flow 
to subsonic velocities with minimum losses of total pressure. An obvious solution of this problem involves 
the generation of an isentropic compression wave with intensity J.(M) (1.5), which decelerates the flow to 
the velocity of sound. However, allowance for the wave decay at the singular point shows that for any Mach 
numbers, the flow behind the reflected discontinuity 2 (see Fig. 1) is supersonic for all intensities of the 
isentropic wave in the range of existence of solutions. 

Indeed, in the range M E [1,Ma], a supersonic flow that decelerates to the sound velocity in a 
compression wave of intensity J .  accelerates again in the reflected rarefaction wave. When M > Ms, the 
intensity J .  is in the region 03 in which the problem does not have solutions (see Fig. 4). Behind waves whose 
intensities axe in the range [1, Jb] in which a solution of the problem exists, the flow is supersonic both behind 
the wave and the reflected discontinuity. Hence, a solitary centered compression wave cannot decelerate the 
flow to subsonic velocity. Therefore, to solve the formulated problem, it is necessary to use optimal systems 
that consist of shocks only [6] or to produce an additional subsoaic shock behind an isentropic wave. 

�9 It has been proved [6] that for M > v~,  an isentropic compression wave can be used to advantage for 
maximum recovery of the velocity head. Figure 6 gives the ratio of the velocity head ahead of and behind the 
wave (curve 1, constructed for M -- 2), calculated from the formula [1] 

- p v  2 = ~ - ( 1  - e )  

It can be seen from Fig. 6 that the function C(J1) reaches a maximum for J1 = J~: 

Hence, an isentropic wave with intensity J0 is an optimal wave for the velocity head. 
The calculations performed show that allowance for the interaction at the singular point in the range 

M E [v~, 2.6] practically does not affect the position of the maximum (curve 2 in Fig. 6). However, with 
increase in M, the intensity corresponding to the maximum gradually approaches the boundary of the region 
iv which solutions are absent, and for M > 2.6, it disappears. As a result, for large values of M, the ratio of 
the velocity heads increases monotonically with increase in J and reaches a maximum for J = Jb, i.e., on the 
boundary of the region in which solutions are absent. 

In contrast to the ratio of the velocity heads in the regions below the tangential discontinuity, the ratio 
of the velocity heads at the resulting shock behaves nonmonotonically for any values of M (curve 3 in Fig. 6), 
reaching a maximum for a certain intensity dd of the compression wave. Calculations show that this quantity 
can be approximated with high accuracy by the expression of the intensity of a solitary shock that is optimal 
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for the velocity head [6]: 

Jd (x/c  + - 

The results obtained suggest that a centered compression wave with intensity J1 =dd  can be used for 
recovery of the velocity head. For this intensity, the velocity head is high both above and below the tangential 
discontinuity. A further increase in J1 facilitates growth of the examined function behind the reflected shock 
2 (see Fig. 1). Simultaneously this leads to an increase in the velocity head behind the shock 3, making worse 
the integral characteristics of the velocity head in the flow behind the point of discontinuity decay. 

This work was supported by the Foundation for Research in Fundamental Natural Sciences (Grant 
No. 95-0-4.2-171) 
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